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Diffusion-Limited Aggregation: A Model for Pattern

Formation
Recent insights from this well-studied model have led to many new

applications--from river networks to oil recovery, and from electrodeposition to string

theory.

Thomas C. Halsey

Nature confronts us at every turn with patterns--whether the stately spiral
shapes of galaxies and hurricanes or the beautiful symmetries of snowflakes
and silicon. A host of processes can play a role in forming natural patterns,
though they usually involve an interaction between the transport and the
thermodynamic properties of the matter and radiation involved.

Typically, convection dominates the transport, in both terrestrial and
astrophysical contexts. A classical example is Rayleigh-BУЉnard convection.
The instabilities and patterns generated in a fluid that is convectively
transporting heat have implications in contexts as far-flung as laboratory fluid
dynamics and solar physics.

In many natural settings, however, convection simply cannot occur. In those
cases, diffusion usually dominates the transport. Consider the formation of
river networks, frost on glass, or veins of minerals in geologic formations.
Similarly, convection plays no role in many patterns in laboratory settings--for
example, during ion deposition, electrodeposition, or other solidification
processes.

The patterns occurring in this type of system have some general features,
which are captured by a number of simple models. The most famous of these
models is diffusion-limited aggregation.1 DLA was originally introduced by
Tom Witten and Len Sander as a model for irreversible colloidal aggregation,
although they and others quickly realized that the model is very widely
applicable. Recent progress in our understanding of DLA has hinged on scaling
studies in nonequilibrium statistical physics. Those studies have advanced
dramatically in recent years, due in no small part to innovative applications of
renormalization group techniques. Yet, many aspects of DLA remain puzzling
to specialists.

The basic concept

To understand the basics, consider colloidal particles undergoing Brownian
motion in some fluid, and let them adhere irreversibly on contact with one
another. Suppose further that the density of the colloidal particles is quite low,
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Figure 1

so one might imagine that the aggregation process occurs one particle at a
time. We are then led to the following model.

Fix a seed particle at the origin of some coordinate system. Now introduce
another particle at a large distance from the seed, and let it perform a random
walk. Ultimately, that second particle will either escape to infinity or contact
the seed, to which it will stick irreversibly. Now introduce a third particle into
the system and allow it to walk randomly until it either sticks to the
two-particle cluster or escapes to infinity. Clearly, this process can be repeated
to an extent limited only by the modeler's patience and ingenuity (the required
computational resources grow rapidly with n, the number of particles).

The clusters generated by this process are both
highly branched and fractal. The cluster's fractal
structure arises because the faster growing parts
of the cluster shield the other parts, which
therefore become less accessible to incoming
particles. An arriving random walker is far more
likely to attach to one of the tips of the cluster
shown in figure 1a than to penetrate deeply into
one of the cluster's "fjords" without first
contacting any surface site. Thus the tips tend to
screen the fjords, a process that evidently
operates on all length scales. Figure 1b shows
the "equipotential lines" of walker probability density near the cluster,
confirming the unlikelihood of random walkers penetrating the fjords.

The example of Hele-Shaw flow

The preceding model is quite interesting, but its general relevance is not
immediately apparent, even for colloidal aggregation at finite concentration. To
illustrate the model's generality, let us consider a very different problem:
Hele-Shaw fluid flow.2

In a thin cell, or in a porous medium, a fluid's velocity is proportional to the
pressure gradient,

(1)

where k is the permeability in a porous medium and m is the viscosity of the
fluid. If the fluid is incompressible, then taking the divergence of equation 1
yields the Laplace equation,

(2)

Suppose that into such a fluid we inject a second, immiscible fluid of much
lower viscosity--the result is Hele-Shaw flow. An example beloved of the oil
and gas industry is the injection of water into highly viscous oil in a porous
rock (such as sandstone), which is a practical form of secondary oil recovery.
Because of its low viscosity, the injected fluid's pressure can be set to a
constant. Then the flow of the more viscous fluid is determined by equation 2
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Figure 2

Figure 3

with a constant-pressure boundary condition, and its velocity is given by
equation 1--which thus also determines the velocity of the interface between
the two fluids.

An experimental realization is displayed in
figure 2. A high-viscosity light-colored
hydrophobic fluid (2.5% hexadecyl end-capped
polymer) was confined to a space 0.4 mm thick
between two glass plates 40 cm across. Water
(colored dark) was then injected. The branched
structure clearly resembles a smeared-out
version of the DLA simulation shown in figure
1. Remarkably, the mathematical descriptions of
the two problems are almost identical. For
Hele-Shaw flow, the pressure field satisfies the
Laplace equation with constant-pressure

boundary conditions, and the velocity of the interface between the two liquids
is proportional to the gradient of the pressure. For DLA, the probability
density of the randomly walking particle satisfies the Laplace equation, with the
cluster's surface providing a surface of constant probability density. In this
case, the probability of growth (not the growth rate) at the surface is given by the
gradient of this probability density. Thus DLA is a stochastic version of the
Hele-Shaw problem.

The relation between Hele-Shaw and DLA is even more subtle than this,
however. In 1984, Boris Shraiman and David Bensimon analyzed the growth of
the surface in the Hele-Shaw problem in two dimensions, and reached the
surprising conclusion that the problem is, in a mathematical sense, ill-posed.3

An arbitrary initial surface will generate singular cusps within a finite time after
the initiation of growth, a mathematical reflection of the so-called Mullins-
Sekerka instability in solidification. Thus, one must add some other physical
effect, such as surface tension, to our model of the Hele-Shaw problem to hold
these mathematical singularities at bay. In DLA, by contrast, the finite particle
size prevents the appearance of any such singularities.

In colloidal aggregation, the particles diffuse,
while in Hele-Shaw flow, the fluid's pressure
diffuses. In each case, the growth of the
interface is sufficiently slow that we can use the
Laplace equation rather than the diffusion
equation to model the diffusing field. This
suggests that the Laplacian model might be
useful for general pattern formation problems
in which diffusive transport controls the growth
of a structure. This is indeed the case: DLA, or
some variant of DLA, has been used to model
phenomena as diverse as electrodeposition, surface poisoning in ion-beam
microscopy, and dielectric breakdown.4 Figure 3 shows a mineralogical
example, in which a deposition process on a rock surface has led to beautiful
dendritic patterns.

DLA, fractals, and multifractals
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DLA clusters are among the most widely known and studied fractal objects.
The fractal dimension D connects the number of particles n with the size r of

the cluster: n = rD. In two dimensions, one finds D яПН 1.71, and in three

dimensions, D яПН 2.5. Numerical simulations have determined D in up to
eight spatial dimensions, with the result5 that in high numbers of spatial

dimensions d, the cluster fractal dimension D яПН d - 1.

However, in two dimensions, where DLA has been most completely studied,
its fractal nature is curiously fragile. For example, the fractal dimension is
sensitive to the lattice structure of the problem. Thus, if one performs the
succession of random walks, and grows the cluster without an underlying
lattice, one obtains the aforementioned D = 1.71. However, if one studies
precisely the same problem on a square lattice, one finds,6 for large clusters,
that D crosses over to a value of 3/2. One of the few rigorous results on the

fractal properties of DLA is the bound D яПН 3/2 in two dimensions, proved
by Harry Kesten.7

In addition, the fractal dimension of DLA appears to depend weakly on the
geometry of the simulation. The result D = 1.71 is obtained for radial growth
from a seed. However, for growth from a surface, or in a channel, one obtains
a result closer to D = 1.67, a small but robust difference from the radial growth
case that seems to persist to the asymptotic growth limit.8 DLA clusters also
exhibit "multifractality," a property of the growth probabilities on the surface
of the cluster.9 Consider a cluster of n particles. The ith particle has a
probability pi that the next particle to arrive at the cluster will attach to it. The
probability measure defined on the surface of a 2D cluster by the {pi} is
termed the "harmonic measure," due to its relationship with the theory of
analytic functions. The probabilities pi are distributed over a wide range, being
relatively large at a cluster's outer tips and quite small deep within the fjords. It
is thus natural to examine the scaling of the moments of this probability

distribution. We can define a scaling function s(q) as an exponent,

(3)

The existence of a nontrivial function s(q) implies multifractality, which can be
interpreted as each particular range of growth probability dp being associated
with a different fractal dimensionality. Nevertheless, the cluster as a whole still
has a unique fractal dimension--the maximum over the fractal dimensions of
all the possible ranges of growth probability.

For deterministic problems, the multifractal scaling function s(q) often exists
even for negative values of q. In those cases, the sum over probabilities in
equation 3 is dominated by the very small values of pi. For a stochastic
problem such as DLA, one might be skeptical about the existence of such
negative-q scaling behavior, which can be easily disrupted by fluctuations.
Several researchers have explored the breakdown of scaling for negative values
of q; in general, the precise manner of the breakdown depends on the details of
averaging the summation over the stochastic ensemble of DLA clusters.10
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The multifractal exponents corresponding to the harmonic measure have
recently been computed exactly by Bertrand Duplantier, using quantum gravity
techniques, for a variety of "equilibrium" fractals in two dimensions, such as
percolation or Ising clusters, and Brownian walks.11 The results agree
qualitatively with the scenario envisioned for DLA clusters, including the
breakdown of the formalism at sufficiently negative values of q. Alas, there is
no indication as yet that these techniques can be extended to nonequilibrium
problems.

Scaling laws for DLA

Multifractality is an interesting formal property in its own right, but its special
interest for DLA lies in the existence of scaling laws connecting the
multifractal properties of the probabilities to the fractal dimension of the
cluster.12 The first, and best established, of these laws was found by Nikolai
Makarov. He showed that for any continuous curve in two dimensions, the
harmonic measure has an "information dimension" of one. Translated into our
notation, this implies that

(4)

which is in good agreement with numerical results.

A second scaling relation was proposed by Leonid Turkevich and Harvey
Scher. Consider the particle of the cluster that is farthest from the center. One
might expect that the cluster radius will grow only if a particle attaches to this
"tip" particle; a process for which the next arriving particle will have a
probability ptip. Since in this event the maximum radius rmax will grow by
roughly the particle size a, it follows that drmax/dn ~ ptipa. Given ptip as a
function of either r or n, and the supplementary assumption that all radii--
including the maximum radius--of the cluster scale in the same way with n, this
equation can be integrated to give the dependence of r on n.

Let us suppose that ptip is the maximum over the set of all growth probabilities
of the particles in the cluster. Then its scaling can be extracted from the
multifractal behavior of the growth probability distribution, connecting the
asymptotic behavior of this distribution with the fractal dimension. The result
is the Turkevich-Scher scaling relation,

(5)

Relaxing our assumptions leads to an inequality, in which the dimension is
greater than or equal to the right-hand side of equation 5. But therein lies a
puzzle: It is the inequality, not the equality, that is satisfied by numerical
results.

An additional scaling relation is the "electrostatic" scaling relation that I
proposed. It originates in a formula for the change in the capacitance C of a
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surface with small changes in the surface geometry. Since the growth of a
cluster by the addition of particles results in a succession of relatively small
changes in the surface, one can convert this formula into a form relevant for
DLA:

(6)

In two dimensions, this yields Si p3i яПН 1/n. Equivalently, comparing with

equation 3, s(3) = 1. In higher dimensions, this argument yields a modified

scaling relation connecting D, d, and s(3). That relation agrees with numerical
results.

Theoretical approaches to DLA

Naturally, the richness of DLA has attracted a number of theoretical attempts
at a comprehensive analysis. Challenges and puzzles, however, abound. One
difficulty facing all such attempts has been the absence of an easily identifiable
small parameter that would allow a perturbation analysis. DLA seems to yield
fractal structures in which fluctuations are important up to arbitrarily high
spatial dimensions; there is no upper critical dimension, above which
mean-field theory would be valid. In fact, mean-field theory for DLA predicts
D = d - 1, which only appears to be true in the limit of infinite spatial
dimensionality. Also, as a nonequilibrium problem, DLA has no obvious
relationship to the class of problems--mostly related to equilibrium statistical
mechanics--that can be solved in two dimensions by conformal field-theory
techniques.

The self-similarity of DLA clusters suggests that their structure might be
determined by a renormalization group approach. Several proposals for
applying real-space renormalization methods to DLA have indeed been made.
Probably the most sophisticated and successful has been the "fixed scale
transformation" of Luciano Pietronero and his coworkers.13 Although not a
real-space renormalization group in the classical sense, it is based on the
enumeration of real-space configurations, and uses a transformation between
scales. It gives good results for the fractal and multifractal properties of DLA
(and a number of other statistical physics problems) in two dimensions. It also
shares with real-space renormalization groups the lack of a small perturbative
parameter.

My coworkers and I have taken an entirely different approach.14 A noticeable
feature of DLA is the way that branches screen one another simultaneously on
a variety of length scales. In two dimensions without a lattice, DLA typically
has four or five large branches, which are more or less stable. At smaller length
scales, however, branches compete in a never-ending vicious cycle of
precarious survival. In fact, for any two neighbors among these smaller
branches, at most one will survive as the cluster grows. The death of branches
as they are screened by their neighbors is balanced by the creation of new
branches via microscopic tip-splitting processes.

This picture of DLA growth led to the "branched growth model," in which the
competition--on all length scales--between branches is represented as a
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Figure 4

dynamical system. The overall cluster dynamics is then represented as a large
family of coupled dynamical systems running simultaneously.

This approach allows approximate but quite detailed solutions for the cluster
dynamics and fractal properties in all dimensions. Results for D from the
branched growth model are in excellent agreement with numerical results,
especially in high dimensions. This approach also allows one to compute
multifractal properties; those results also agree with simulations. Finally, this
approach is especially well suited for computing the topological self-similarity
of the clusters (see the box on page 39).

The Hastings-Levitov approach

Recent work on DLA has been dominated by a new formulation of the
problem in two dimensions, due to Matthew Hastings and Leonid Levitov.15

Although it has always been known that the Hele-Shaw problem in two
dimensions has a natural conformal representation, Hastings and Levitov were
the first to generate an elegant representation of DLA growth as a problem in
iterated conformal maps. Their formulation has revived interest in the DLA
problem, by making available the powerful tools of analytic function theory.

Consider a cluster of n particles. The Riemann mapping theorem assures us
that there exists a conformal map, w = Fn(z), that maps a unit circle in the
complex z-plane onto the surface of the cluster in the physical w-plane. If the
exterior of the unit circle is mapped onto the cluster exterior, then it follows
that Fn is an analytic function in the exterior of the unit circle. Conformal
mapping then tells us that the angular distance between two points on the
circle circumference in z-space is proportional to the total growth probability
along the arc connected by the images of those two points in the physical
space.

Hastings and Levitov gave a simple algorithm
for the construction of the function Fn(z)
corresponding to a given cluster. Suppose that a
function, fl,q(z), giving a "bump" on the unit
circle, corresponds to the attachment of one

particle of size l at an angular position q in the
z-plane (see figure 4). Then if Fn is the map for

an n-particle cluster, the map for an (n +
1)-particle cluster, where the last particle is

added at the image of the angular position q, is
given by Fn( fl,q(z)). Iteration then allows the

determination of the cluster map from the "one-particle" maps f. This is a
concrete realization of what mathematicians refer to as a "stochastic Loewner
process." Curiously, such processes have recently been used in the rigorous
proof of some of Duplantier's results for multifractal scaling.

Hastings used the conformal representation of DLA growth to perform a
momentum-space renormalization group calculation for the DLA dimension
in two dimensions. Although the result, D = 1.7, was highly accurate, the
calculation suffered from the ever-present defect of perturbative approaches to
DLA: It was based on a small parameter that wasn't small.
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Figure 5

The Hastings-Levitov algorithm lets us reproduce not only DLA, but also

more general models. If the growth positions, q, in z-space (the pre-image of
the physical space) are chosen randomly, we get DLA. But other choices are

possible. An interesting choice is qn = 2pWn for the angle qn of the nth

particle, with W a constant. Although perhaps unphysical, this fully
deterministic choice allows one to explore the significance of randomness in
the DLA model. Benny Davidovitch and his colleagues16 have shown that for

irrational values of the parameter W, the Hastings-Levitov model leads to
branched structures qualitatively similar to DLA, but with significantly higher
values of the fractal dimension D, as shown in figure 5. Scaling functions for
the Hastings-Levitov model were computed, both for the stochastic (DLA)

case and for the quasiperiodic (W irrational) case; the functions gave
numerically accurate results for the dimensions of both types of cluster in two
dimensions.

DLA, string theory, and beyond

The most surprising recent development
suggests a possible relationship between
Hele-Shaw growth and string theory.17 The
starting point for this development is the
remarkable fact that Hele-Shaw growth
conserves the harmonic moments of the
exterior domains. Those moments are defined
by

(7)

where the integral is over the exterior of the growing structure, z = x + iy is the
ordinary complex variable, and divergences in the integral are suitably
regularized. Of course, C0 varies as the Hele-Shaw pattern grows, but all of the
other Ck are fixed during the growth. Thus, the problem of determining the
patterns created by Hele-Shaw growth is equivalent to determining the families
of curves with different values of C0 but fixed values of the other Ck.

This problem, in turn, can be related to a set of equations known as the
"integrable Toda hierarchy," which also appear in 2D quantum gravity, and
hence in string theory. In this relation, the parameters Ck become the degrees
of freedom of this integrable hierarchy. Furthermore, it is known that a
particular solution of the Toda hierarchy is related to the statistical mechanics

of Hermitian N яПН N matrices (which, in the large-N limit, is also believed
to reproduce the scaling behavior of 2D quantum gravity). It is precisely in the

N яПН яПН limit that the Toda hierarchy maps exactly onto the pure
Hele-Shaw problem; this suggests a strong, yet still obscure mathematical
relationship between the latter problem and string theory.

Next year marks the 20th anniversary of the Witten-Sander model, which
opened the door to the wonderful physics of diffusion-limited aggregation, and
revived interest in the classical problem of Hele-Shaw growth. Those beautiful
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structures seemed, at the outset, likely to be understood by then-conventional
techniques. Instead, there remains a certain amount of mystery. Our
understanding of the phenomenology of DLA has certainly become quite
sophisticated, and the new techniques of Pietronero, Hastings and Levitov, and
others have afforded new insights. In addition, it appears that there are deep
connections between Hele-Shaw growth--and thus DLA--and 2D quantum
gravity. Such newly discovered connections to other problems of theoretical
physics suggests that the next 20 years are liable to be full of surprises.
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